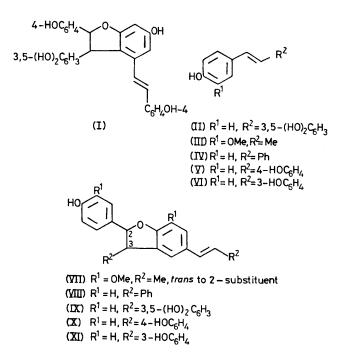
Oxidative Dimerisation of 4-Hydroxystilbenes *in vitro*: Production of a Grapevine Phytoalexin Mimic

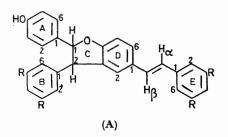

By PETER LANGCAKE and ROBERT J. PRYCE*

(Shell Research Ltd., Shell Biosciences Laboratory, Sittingbourne Research Centre, Sittingbourne, Kent ME9 8AG)

Summary Dimerisation of trans-4-hydroxystilbenes with horseradish peroxidase-hydrogen peroxide gives analogous products to those formed from phenylpropenoids; the product (IX) obtained from trans-resveratrol is structurally related to the phytoalexin (I) isolated from grapevines but the coupling orientation is different, and both the natural and synthetic dimers of resveratrol have a similar spectrum of antifungal activity.

WE have recently shown¹ that one of the antifungal compounds produced in grapevine (Vitis vinifera) leaves in response to fungal infection or u.v. irradiation is ϵ -viniferin (I), a putative dimer of trans-resveratrol (II). At the same time other phytoalexins, which appear to be related, higher oligomers of resveratrol, and the non-antifungal trans-resveratrol itself are also produced.¹ None of these phytoalexins nor trans-resveratrol can be detected in healthy vine leaves but mature vine wood contains some of them in considerable quantity.¹ It was proposed¹ that ϵ -viniferin could be biosynthesised by a controlled oxidative dimerisation of trans-resveratrol. Analogous reactions in vitro with 4-hydroxyphenylpropenoids have been carried out using both enzymes and chemical oxidants.² For example, oxidation of trans-isoeugenol (III) with horseradish peroxidase (HRP)-hydrogen peroxide gave the racemic dehydrodi-isoeugenol (VII) one optical isomer of which is now also known as a natural lignan, licarin A.³

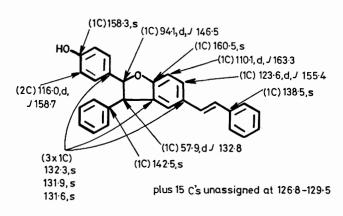
In order to test our biosynthetic hypothesis and to see if the model phenylpropenoid lignan syntheses could be extended to stilbenes we chose to treat *trans*-4-hydroxystilbene (IV) with HRP-hydrogen peroxide under similar² conditions. A crystalline dehydrodimer was isolated (73% yield) m.p. 175—178 °C, $C_{28}H_{22}O_2$, M^+ at m/e 390, to which we assign structure (VIII) on the following evidence. By mass and ¹H-n.m.r. spectroscopy of the methylated (diazomethane) and acetylated derivatives the product was clearly a monophenol. Its u.v. spectrum showed a similar


trans-stilbene chromophore to that of (IV), but in contrast to (IV) the long wavelength chromophore was unaffected by addition of aqueous sodium hydroxide, indicating the absence of a free *p*-hydroxy group on the *trans*-stilbene unit. Its i.r. spectrum indicated no other functionality. Assignments of the ¹H- and ¹³C-n.m.r. spectra of (VIII) are given in the Table and Figure, respectively. Orientation of the A and B rings relies on the different line-widths of the ring c protons which are attributable to benzylic ¹H couplings between 2c-H and rings B and D compared with smaller TABLE. 100 MHz ¹H-n.m.r. spectra of (VIII) and (IX) [(CD₃)₂CO, Me₄Si internal standard]. See structure (A) for assignments.

Compound	2c	lc	2в+6в		roton assig 2E+6E		p.p.m. (J_{2A+6A})	Hz)Wł/Hz 5d] 2р	6p	Hα	нβ	ОН
VIII, $R = H$)	4.62 d	5•49 d					→ 6·76—	7.54 compl	ex m ←				→ 2·87 s
(IX, R = OH)	$\begin{array}{c} (8.5) W_{\frac{1}{2}} (2.5) \\ 4.44 \text{ d} \\ (8.0) W_{\frac{1}{2}} (3) \mathbf{a} \end{array}$	$(8.5)W_{\frac{1}{2}}(1.5)$ 5.46 d $(8.0)W_{\frac{1}{2}}(1.7)^{a}$	$^{6\cdot 20}_{(2\cdot 2)}$ d	6·28 m	6·55 d (2·0)	6·84 d (8·7)	7·22 d (8·7)	6·86 d (8·5)	7•26 brs a	7·40 dd (8·5 and 1·5)	6·88 d (16·5)	7·06 d (16·5)	8.02 brs (5xOH)
a Irradiation of proton 2C sharpens the aromatic proton resonances 28, 68, 48, 50, 60, and particularly 2p which resolves to a doublet 11.5 Hz Irradiation of proton 1c													

a Irradiation of proton 2C sharpens the aromatic proton resonances 2B, 6B, 4B, 5D, 6D, and, particularly 2D which resolves to a doublet, J 15 Hz, Irradiation of proton 1C sharpens only the ring A aromatic protons.

benzylic couplings of 1c-H with ring A. In agreement with this assignment there is a down-field shift (0.08 p.p.m.) of 1c-H in the acetate of (VII) (CDCl₃) compared with the free phenol (VIII) (CDCl₃) while 2c-H remains unaffected.


of (VIII) and (IX) since such assignments in phenylpropenoid dimers of the type (VII) are known to be unreliable.⁴ In the absence of any other information at present, analogy with the formation of (VII) from (III) suggests *trans-2.3*stereochemistry for (VIII) and (IX).

Assignment of the 13 C-n.m.r. spectrum of (VIII) was facilitated by prior analysis of the spectra of *trans*-4,4'-dihydroxystilbene (V) and *trans*-4-hydroxystilbene (IV).

When trans-resveratrol (II) was subjected to similar HRP-hydrogen peroxide treatment, ϵ -viniferin could not be detected but the major product was another isomeric dehydrodimer. It was isolated (41% yield) by high pressure liquid chromatography as a homogeneous (t.l.c. and g.l.c. on three different phases) amorphous solid and was shown to be a pentaphenol, C28H22O6, by mass spectroscopy of the free phenol (M^+ at m/e 454), its pentamethyl ether (diazomethane) (M^+ at m/e 524·2188, $C_{33}H_{32}O_6$ requires M^+ 524.2199), and its penta-acetate (M^+ at m/e 664). ¹Hn.m.r. spectra of these derivatives confirmed the pentaphenolic nature of the product and structure (IX) is assigned to this dimer on the following evidence. Its u.v. spectrum had a similar trans-stilbene chromophore to that of trans-resveratrol1 but in contrast it showed no base shift of the long wavelength chromophore, indicating the presence of a trans-stilbene unit lacking a free p-hydroxy group. Its i.r. spectrum indicated no additional functionality. ¹Hand ¹³C-n.m.r. spectral assignments to (IX) are shown in the Table and Figure, respectively and ¹H-benzylic couplings were again used to determine the orientation of rings A and B. ¹³C Assignments were facilitated by comparison with the spectra¹ of trans-resveratrol (II) and ϵ -viniferin (I). This new synthetic dehydrodimer of trans-resveratrol differs from ϵ -viniferin (I) in that only the presumed radical intermediates (cf. ref. 2) derived from the two p-hydroxy substituted aromatic rings have coupled to form (IX); formation of ϵ -viniferin would require coupling of radicals derived from one of each of the p-hydroxy and di-mhydroxy rings.

The two stilbene dimers described here, (VIII) and (IX), are both racemic compounds; ϵ -viniferin is a single optical isomer.¹ No attempt has been made to use ¹H n.m.r. vicinal coupling constants to define the 2,3-stereochemistry

(<u>III</u>)

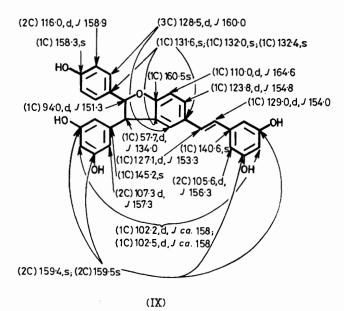


FIGURE. 25 MHz ¹³C-n.m.r. spectra of (VIII) and (IX) $[(CD_3)_2$ -CO, Me₄Si internal standard]. Assignments: (number carbons with this chemical shift) δ p.p.m.,multiplicity of signal in coupled spectrum, J_{CH} Hz.

Despite the different couplings of *trans*-resveratrol units in the synthetic dimer (IX) and ϵ -viniferin (I) sufficient structural similarity remains for the synthetic dimer to mimic the antifungal properties of ϵ -viniferin. Both compounds have a similar spectrum and magnitude of activity in vitro¹ and in vivo against phytopathogenic fungi. While trans-4-hydroxystilbene shows antifungal properties in our bioassays⁵ its dimer (VIII) is inactive. Oxidative dimerisation as described above, of trans-4,4'-dihydroxystilbene (V) and trans-3,4'-dihydroxystilbene (VI) has given the new antifungal dimers (X) (7% yield) and (XI) (46% yield), respectively.

(Received, 29th December 1976; Com. 1412.)

- ¹ P. Langcake and R. J. Pryce, Experientia, 1977, 33, 151.
 ² K. V. Sarkanen and A. F. A. Wallis, J.C.S. Perkin I, 1973, 1869 and refs. therein.
 ³ C. J. Aiba, R. G. Correa, and O. R. Gottlieb, Phytochemistry, 1973, 12, 1163.
 ⁴ M. Gregson, W. D. Ollis, B. T. Redman, I. O. Sutherland, and H. H. Dietrichs, Chem. Comm., 1968, 1394 and refs. therein; B. J. Donnelly, D. M. X. Donnelly, A. M. O'Sullivan, and J. P. Prendergast, Tetrahedron, 1969, 25, 4409.
 ⁵ P. Langcake and R. J. Pryce, Physiol. Plant Path., 1976, 9, 77.